2影响黏度的因素
(1)温度 如式(15)所示,液体的黏度在温度不太高时,式中的指数项比乘数项的影响
,即温度升高,η值下降。在温度很高时,指数项趋近于1,乘数项将起主要作用,即温度
高,η值增大,但这已是接近气态的情况。图18为常用金属动力黏度与温度的关系。
(2)熔点 黏度反映原子间结合力的强弱,与熔点有共同性。因此,合金成分的改变也
定着黏度的大小,图19即为 MgSn系合金的相图与
度的关系。可见,难熔化合物的黏度较高,而熔点低
共晶成分合金其黏度低。
在铸件断度梯度相近的情况下,固液相区的宽度取决于铸件合金的凝固温度区间ΔtC 的大小。图
8是三种不同碳质量分数的碳钢在砂型和金属型中凝固时测得的动态凝固曲线。可见,
碳质量分数增加,碳钢的结晶温度范围在不断扩大,铸件断面的凝固区域随之加宽。低
在砂型中的凝固近于逐层凝固方式,中碳钢为中间凝固方式,高碳钢近于体积凝固。
当铸件合金成分确定后,铸件断面固液相区的宽度则取决于铸件中的温度梯度。温度梯
度较大时,固液相区的宽度较窄,则合金趋向于逐层凝固方式,反之依然。
晶体中每个原子皆在平衡位置附近振动 (即所谓热振
动),温度升高时振动能量增加,振动频率和振幅加大。
以双原子为模型 (图12),假设左边的原子在坐标原点被
固定,而右边的原子是自由的。当温度升高时,右边自由
振动原子的振幅增大,此时,若该原子以R0 为原点作简谐振动,则其平衡位置仍是R0,这
样就不会发生膨胀。但势能曲线向右是水平渐近线,向左是垂直渐近线,是极不对称的。