三、铸件温度场的测定及动态凝固曲线
铸件温度场测定方法的示意图如图129所示。将一组热电偶的热端固定在型腔中 (如
铸型中)的不同位置,利用多点自动记录电子电位计 (或其他自动记录装置)作为温度测量
和记录装置,即可记录自金属液注入型腔起至任意时刻铸件断面上各测温点的温度时间曲
52
线,如图130(a)所示。根据该曲线可绘制
出铸件断面上不同时刻的温度场 [图130
(b)]和铸件的凝固动态曲线 [图131(b)]。
铸件温度场的绘制方法是:以温度为纵
坐标,以离开铸件表面向中心的距离为横坐
标,将图130(a)中同一时刻各测温点的温
度值分别标注在图130(b)的相应点上,连
接各标注点即得到该时刻的温度场。以此类
推,则可绘制出各时刻铸件断面上的温度场。
图131(b)左边的曲线与铸件断面上各时刻的液相等温线相对应,称为 “液相边界”,
右边的曲线与固相等温线相对应,称为 “固相边界”。从图131(b)可以看出,时间为2min
时,距铸件表面x/R=06处合金开始凝固,由该处至铸件中心的合金仍为液态 (液相区);
x/R=02处合金刚刚凝固完了,从该处至铸件表面的合金为固态 (固相区),二者之间是
液固两相区 (凝固区)。到32min时,液相区消失。经过53min,铸件壁凝固完毕。所
以,图131(b)的两条曲线是表示铸件断面上液相和固相等温线由表面向中心推移的动态
曲线。“液相线”边界从铸件表面向中心移动,所到之处凝固就开始;
减小铸型中气体反压力的途径有两条。一条是适当低型砂中的含水量和发气物质的含量,亦即减小
砂型的发气性;另一条途径是提高砂型的透气性,在砂型上扎通气孔,或在离浇注端最远或高部位设通
气冒口,增加砂型的排气能力。
3浇注条件方面的因素
(1)浇注温度 浇注温度对液态金属的充型能力
有决定性的影响。浇注温度越高,充型能力越好。在
一定温度范围内,充型能力随浇注温度的提高而直线
上升。超过某界限后,由于金属吸气多,氧化严重,充型能力的提高幅度越来越小。对于薄
壁铸件或流动性差的合金,利用提高浇注温度改善充型能力的措施,在生产中经常采用,也
比较方便。但是,随着浇注温度的提高,铸件一次结晶组织粗大,容易产生缩孔、缩松、粘
砂、裂纹等缺陷,因此必须综合考虑,谨慎使用。