在铸件断度梯度相近的情况下,固液相区的宽度取决于铸件合金的凝固温度区间ΔtC 的大小。图
8是三种不同碳质量分数的碳钢在砂型和金属型中凝固时测得的动态凝固曲线。可见,
碳质量分数增加,碳钢的结晶温度范围在不断扩大,铸件断面的凝固区域随之加宽。低
在砂型中的凝固近于逐层凝固方式,中碳钢为中间凝固方式,高碳钢近于体积凝固。
当铸件合金成分确定后,铸件断面固液相区的宽度则取决于铸件中的温度梯度。温度梯
度较大时,固液相区的宽度较窄,则合金趋向于逐层凝固方式,反之依然。
晶体中每个原子皆在平衡位置附近振动 (即所谓热振
动),温度升高时振动能量增加,振动频率和振幅加大。
以双原子为模型 (图12),假设左边的原子在坐标原点被
固定,而右边的原子是自由的。当温度升高时,右边自由
振动原子的振幅增大,此时,若该原子以R0 为原点作简谐振动,则其平衡位置仍是R0,这
样就不会发生膨胀。但势能曲线向右是水平渐近线,向左是垂直渐近线,是极不对称的。
如图137所示。
对于这类合金铸件采用普通冒口消除其缩松是很困难的,而往
往必须采取其他措施,如增加冒口的补缩压力,加速铸件冷却
等方法,以增加铸件的致密性。
中等结晶温度范围的合金 (如中碳钢,高锰钢,部分黄铜等),凝固区域为中等宽度。
它们的补缩特性、热裂倾向性和充型性能介于窄结晶温度范围和宽结晶温度范围合金之间。
4.铸件的凝固方式的影响因素
铸件断面凝固区域的宽度是由合金的结晶温度范围和温度梯度两个量决定的。