扩散焊是适用于航空、航天等高技术领域和新材料的连接需要而迅速发展起来的一种精密连接方法。如陶瓷、金属间化合物、非晶和单晶合金材料等一些特殊材料,用传统的熔焊方法难以实现可靠连接;一些高性能构件往往需要与性能差异较大的异种材料连接,例如金属与陶瓷、铝与钢、钛与钢、金属与玻璃等的连接。
优点:
a.扩散焊时因基体不过热、不熔化,可以在不降低焊件性能的情况下焊接介乎所有的金属或非金属。
b.扩散焊接的接头质量非常好,焊件精度高,变形小。
c.可焊接大断面的接头,和结构复杂、接头不易接近以及厚薄相差较大的工件。
d.能对组件中的多个接头同时实施焊接。
体扩散(晶内扩散)
熔化焊料扩散到晶粒中去的过程叫做体扩散或晶内扩散。焊料向母材内部的晶粒间扩散。由于晶界之间的能量起伏,因此这个扩散阶段,可形成不同成分的合金。沿不同的结晶方向,扩散程度不同。由于扩散,母材内部生成各种组成的合金。在某些情况下,晶格变化会引起晶粒自身分开。对于体扩散,如焊料的扩散超过母材允许固溶度,就会产生象铜和锡共存的那种晶格变化,使晶粒分开,形成新晶粒。这种扩散是在铜及黄铜等金属被加热到较高温度时发生的。
晶格内扩散
将焊料沿着晶体内特定的晶面,以特定的方向扩散的过程叫做晶格内面扩散或网孔状扩散。这是由于固体金属的不规则,熔化的金属原子向某一个面析出及晶格缺陷而引起的。这种扩散也可沿结晶轴方向发生,焊料金属可分割晶粒,引起和晶界扩散相类拟的现象。
在电子产品用的锡铅焊料中,几乎不发生这种扩散,这里仅做为参考。
晶界扩散:
这是熔化的焊料原子向固体金属的晶界扩散,液态金属原子由于具有较高的动能,沿着固体金属内部的晶粒边界,快速向纵深扩展。与异种金属原子间晶内扩散相比,晶界扩散是比较容易发生的。另外,在温度比较低的情况下,同后面说到的体扩散相比,晶界扩散容易产生,而且其扩散速度也比较快。
一般来说,晶界扩散的活化能量可比体扩散的活化
能量小,但是,在高温情况下,活化能量的作用不占主导地位,所以晶界扩散和体扩散都能够很容易地产生。然而低温情况下的扩散,活化能量的大小成为主要因素,这时晶界扩散非常显著,而体扩散减少,所以看起来只有晶界扩散产生。
用锡-铅焊料焊铜时,锡在铜中既有晶界扩散,又有体扩散。另外,越是晶界多的金属,即金属的晶粒越小,越易于结合,机械强度也就越高。 由于晶界原子排列紊乱,又有空穴(空穴移动),所以极易熔解熔化的金属,特别是经过机械加工的金属更易结合。然而经过退火的金属,由于出现了再结晶、孪晶,晶粒长大,所以很难扩散。经退火处理的不锈钢难以焊接就是这个道理。为了易于焊接越见,加工后的母材的晶粒越小越好。