高梯度磁选已在工业上成功地应用于高岭土提纯,金、铀和
等高价金属细粒尾矿的分选,钢厂废水处理及微细粒赤铁矿的
收等方面。其应用方向还包括其他工业废水处理,化学物质的
纯与分离,生物学上的细胞、细菌及菌素等的分离,医药的分
,煤的脱硫及除灰,烟尘废气的净化回收等。高梯度磁选选择
问题是妨碍广泛工业应用的关键,尤其对细粒级而言。因此
究高梯度磁选的选择性,提高其分选效率是必要的。影响高梯
磁选选择性的因素主要有:磁介质的匹配及排列形式、载体的
质及矿浆流态、被选物料的分散程度及机械夹杂等。
图2 86圆柱形螺线管端面从内缘到外缘不同距离x的场强变化曲线
铁铠圆筒部分的厚度可按同样方法确定。
对于鞍形铠装螺线管(图3)亦可按磁通连续性原理得到下式
铁铠的尺寸确定后,铁铠内的磁路长度便容易确定,从而铁
铠内的磁势也就可以按式(2)进行计算了。
铠装螺线管的内腔是一均匀磁场,它相当于无限长螺线管
磁场强度为
中:In———螺线管单位长度的安匝数。
螺线管的总安匝数按下式计算
则单位长度的安匝数
根据 DLVO理论,颗粒系统总势能取决于双电层势能VR 和
德华相互作用势能VA:
VT=VR+VA (9
对于磁性颗粒之间的相互作用,Svoboda将 DLVO理论扩展
立了磁絮凝理论模型,其总势能为
VT=VR+VA+Vm (10
中:Vm 为颗粒之间的磁吸引能。
基于此,通过调节系统颗粒之间的相互作用可以使体系达到
宜分选的分散状态。
强化分散的另一途径是化学分散,即利用分散剂,分散剂的
散作用机理可以归纳为以下几点: