20世纪70年代以来,高梯度磁分离技术在微细粒物料分离
域崭露头角,引起各国有关部门的重视。实现高梯度磁分离的
键在于采用能产生高磁场梯度的钢毛介质,因此,揭示各种钢
介质的磁场分布特性,是深入研究高梯度磁分离理论的基础。
用聚磁钢毛的切面呈矩形、圆形和椭圆形。国外学者曾用解析对单丝圆切面钢毛的磁场特性做了较详细的研究[1],并在此基上建立各种理论数学模型2][3],用以研究高梯度磁捕集过程的质。然而,上述研究都以圆切面钢毛为对象,没有考虑介质切面形状效应,而且都是局限于对孤立的单丝介质的研究,没有涉实用中多丝钢毛介质间的相互影响所引起的磁场特性的变化。
根据 DLVO理论,颗粒系统总势能取决于双电层势能VR 和
德华相互作用势能VA:
VT=VR+VA (9
对于磁性颗粒之间的相互作用,Svoboda将 DLVO理论扩展
立了磁絮凝理论模型,其总势能为
VT=VR+VA+Vm (10
中:Vm 为颗粒之间的磁吸引能。
基于此,通过调节系统颗粒之间的相互作用可以使体系达到
宜分选的分散状态。
强化分散的另一途径是化学分散,即利用分散剂,分散剂的
散作用机理可以归纳为以下几点:
(2)在连续型高梯度磁选机中引入动球装置,球运动可以剔
一些非磁性夹杂物,同时还可清除因剩磁而附着在介质球上的
粒;
(3)将介质丝通过电流。Parker最早提出了介质丝带电的磁
机,Watson介绍了带电介质超导高梯度磁选机,其实质就是在
梯度磁选中增加了静电力的作用。此时磁力速度可以表示为
x———物质的比磁化率,m
3
/kg;
b———颗粒的半径,m;
H0———介质丝所在空间背景磁场强度,A/m;