高梯度磁选已在工业上成功地应用于高岭土提纯,金、铀和
等高价金属细粒尾矿的分选,钢厂废水处理及微细粒赤铁矿的
收等方面。其应用方向还包括其他工业废水处理,化学物质的
纯与分离,生物学上的细胞、细菌及菌素等的分离,医药的分
,煤的脱硫及除灰,烟尘废气的净化回收等。高梯度磁选选择
问题是妨碍广泛工业应用的关键,尤其对细粒级而言。因此
究高梯度磁选的选择性,提高其分选效率是必要的。影响高梯
磁选选择性的因素主要有:磁介质的匹配及排列形式、载体的
质及矿浆流态、被选物料的分散程度及机械夹杂等。
(1)用有限差分法并借助电子计算机可以较准确地求解出单
及多丝矩形钢毛周围各点的磁场强度Bx、By和 B值,从而揭
其磁场分布特性。
(2)当钢毛未达磁饱和时,对矩形钢毛其磁场特性只取决于
横切面的几何尺寸;切面的 L/W越大及 W越小,则钢毛磁化
表面的磁场磁力越大。
(3)当钢毛的横切面积一定时,L/W>3的矩形钢毛的磁场磁
比圆形切面钢毛大,因而,当钢毛工作于未饱和磁化状态时,
采用矩形钢毛会更有效。
由式(3)看出,当j,λ,a1为定值时,螺线管轴线中点的磁场
度主要与F(α,β)有关,即与螺线管的几何尺寸有关。
作者曾对自己设计的,由16盘小线圈组成的螺线管在不同
度时轴线中点的磁场强度H0进行了测定,结果如图2所示。
螺线管的参数为:a1=4.3cm,α =3,j=828A/cm
2
,λ =
576,每盘小线圈的厚度为2.1cm。
73
由图2看出,螺线管轴线中点的磁场强度H0随其长度(β)增
加而增加。在螺线管较短时(β <2),H0增加较快;螺线管较长
时(β>2),H0增加很慢,最后趋于饱和,其值接近0.4πIn(In是
螺线管单位长度安匝数)。这说明螺线管较短时漏磁较多,随着
螺线管的增长,漏磁逐步减少,最终趋于零。