(3)铸型中的气体 铸型有一定的发气能力,能在金属液与铸型之间形成气膜,可减小
的摩擦阻力,有利于充型。
根据实验,湿型中加入质量分数小于6%的水和小于7%的煤粉时,液态金属的充型能
高,高于此值时型腔中气体反压力增大,充型能力下降,如图122所示。型腔中气体
91
反压力较大的情况下,金属液可能浇不进去,或者浇
口杯、顶冒口中出现翻腾现象,甚至飞溅出来伤人。
所以,铸型中的气体对充型能力影响很大。
程传热特征的各物理量之间的方程式,即铸件和铸型的温度场数学模型并加以求解。目前数
值模拟方法日臻完善,应用范围也在进一步拓宽。在实现温度场模拟的同时,还能对工艺参
数进行优化、宏观及微观组织的模拟等。但从三者的联系上看,数学解析法得到的基本公式
是进行数值模拟的基础,而实验测定温度场对具体的实际凝固问题有不可替代的作用,也是
验证理论计算的必要途径。
一、数学解析法
应该指出,铸件在铸型中的凝固和冷却过程是非常复杂的。这是因为,它首先是一个不
稳定的传热过程,铸件上各点的温度随时间而下降,而铸型温度则随时间上升;其次,铸件
的形状各种各样,其中大多数为三维的传热问题;
一般来说,状态
图上具有较稳定的化合物的合金,在一定的成分范围内熔化以后,这种化合物不易分解,即
在液态中容易保留相近成分的原子集团。
有些熔点较低而在金属中固溶能力很低的元素,同类原子间 (BB)的结合力比金属
(AA)及其与金属的原子结合力 (AB)也较小时 (不形成化合物),则AA原子易聚集在
一起,而把B原子排挤在原子集团外围和液体的界面上,如同吸附在其表面一样。但当这
种元素的加入量较大时,则也可以被排挤在一起形成BB原子集团,甚至形成液体的分层。