当使表面增加ΔS面积时,外界对系统所
做的功为ΔW=σΔS。外界所做的功仅用于抵抗表面张力而使系统表面积增大所消耗的能量。
该功的大小等于系统自由能的增量,即
ΔW=σΔS=ΔFσ=ΔFΔS(111)
由此可知,表面自由能即单位面积上的自由能。由于表面自由能可表达为力与位移的乘
积,因此,[σ]=Jm2=N·mm2 =Nm
这样,σ又可理解为物体表面单位长度上作用着的力,即表面张力。表面自由能与表面
张力在数值上是相同的,它们是从不同角度描述了同一现象。但在习惯上往往都采用表
面张力这个名词。
液态成型 (铸造)是将熔化成液态的金属浇入铸型后一次制成需要形状和性能的零件。
属由液态→固态的凝固过程中的一些现象,如结晶、溶质的传输、晶体长大、气体溶解和
出、非金属夹杂物的形成、金属体积变化等都与液态金属结构及其物理性质有关。因此,
解液态金属的结构及其性质,是控制铸件形成过程的必要基础。
由于它与铸型的接触表面积相对较小,热量散失比较缓慢,则充型能力较高。
铸件的壁越薄,折算厚度就越小,就越不容易被充满。另一方面,铸件结构复杂、厚薄部分
过渡面多,则型腔结构复杂,流动阻力大,铸型的充填就困难。
程传热特征的各物理量之间的方程式,即铸件和铸型的温度场数学模型并加以求解。目前数
值模拟方法日臻完善,应用范围也在进一步拓宽。在实现温度场模拟的同时,还能对工艺参
数进行优化、宏观及微观组织的模拟等。但从三者的联系上看,数学解析法得到的基本公式
是进行数值模拟的基础,而实验测定温度场对具体的实际凝固问题有不可替代的作用,也是
验证理论计算的必要途径。
一、数学解析法
应该指出,铸件在铸型中的凝固和冷却过程是非常复杂的。这是因为,它首先是一个不
稳定的传热过程,铸件上各点的温度随时间而下降,而铸型温度则随时间上升;其次,铸件
的形状各种各样,其中大多数为三维的传热问题;