(5)表面张力 表面张力对薄壁铸件、铸件的细薄
部分和棱角的成型有影响。型腔越细薄,棱角的曲率半
径越小,表面张力的影响越大。为克服附加压力的阻碍,
必须在正常的充型压头上增加一个附加压头h。
因此,为提高液态金属的充型能力,在金属方面可
采取以下措施。
(1)正确选择合金的成分 在不影响铸件使用性能的情况下,可根据铸件大小,厚薄和
铸型性质等因素,将合金成分调整到实际共晶成分附近,或选用结晶温度范围小的合金。对
某些合金进行变质处理使晶粒细化,也有利于提高其充型能力。
1金属晶体中的原子结合、加热膨胀、熔化
晶体的结构和性能主要决定于组成晶体的原子结构和它们之间的相互作用力与热运动。
各种不同的晶体其结合力的类型和大小是不同的。但是在任何晶体中,两个原子间的相互作
图11 A、B原子作用力F和
势能W 与原子间距R的关系
用力或相互作用势能与它们之间距离的关系在性质上是相同的,如图11所示。图11(a)
表示原子间相互作用力F随原子间距离R的变化规律。当两个原子相距无穷远时,相互作
用力为零,当两原子靠近时,原子间产生吸引力 (F<0),
并随距离的缩短而增大。随着距离的继续缩短,到达R=
R1 时,吸引力大。
四、铸件的凝固方式
1凝固区域及其结构
铸件在凝固过程中,除纯金属和共晶成分合金外,断面上一般都存在三个区域,即固相
区、凝固区和液相区。铸件的质量与凝固区域有密切关系。
图132 凝固区域结构示意图
图132是凝固区域结构的示意图 (另一半与之
对称)。凝固区域又可划分为两个部分。液相占优
势的液固部分和固相占优势的固液部分。在液固部
分中,晶体处于悬浮状态而未连成一片,液相可以
自由移动。用倾出法做实验时,晶体能够随同液态
金属一起被倾出。