在这种情况下,铸件和铸型的温度分布如图125所示。因此可以认为,在整个传热过
程中,铸件断面的温度分布是均匀的,铸型内表面温度接近铸件的温度。如果铸型足够厚,
由于铸型的导热性很差,铸型的外表面温度仍然保持为t20。所以,绝热铸型本身的热物理
性质是决定整个系统传热过程的主要因素。
2金属铸型界面热阻为主的金属型中凝固
较薄的铸件在工作表面涂有涂料的金属型中铸造时,就属于这种情况。金属铸型界面
处的热阻较铸件和铸型中的热阻大得多,这时,凝固金属和铸型中的温度梯度可忽略不计,
即认为温度分布是均匀的,传热过程取决于涂料层的热物理性质。若金属无过热浇注,则界
面处铸件的温度等于凝固温度 (tF=tC),铸型的温度保持为t20,如图126所示。
三、表面张力及其对成型过程的影响
1表面张力的实质
表面张力是表面上存在的一个平行于表面且各向大小相等的张力。表面张力是由于物质
在表面上的质点受力不均匀而产生的。对于液体和气体界面上的质点 (原子或分子),由于
液体的密度大于气体的密度,故气相对它的作用力远小于液体内部对它的作用力,使表面层
质点处于不平衡的力场之中。结果是表面层质点受到一个指向液体内部的力,使液体表面有
自动缩小的趋势。
从物理化学可知,表面自由能是产生新的单位面积表面时系统自由能的增量。设恒温、
恒压下表面自由能的增量为ΔF,表面自由能为σ。
对于结晶温度范围较宽的合金,散失一部分
(约20%)潜热后,晶粒就连成网络而阻塞流动,
大部分结晶潜热的作用不能发挥,所以对流动性影
响不大。但是,也有例外的情况,当初生晶为非金
属,或者合金能在液相线温度以下以液固混合状
态,在不大的压力下流动时,结晶潜热则可能是个
重要的因素。例如,在相同的过热度下AlSi合金的流动性,在共晶成分处并非大值,而
在过共晶区里继续增加 (图121),就是因为初生硅相是比较规整的块状晶体,且具有较小
的机械强度,不形成坚强的网络,能够以液固混合状态在液相线温度以下流动。