对于结晶温度范围较宽的合金,散失一部分
(约20%)潜热后,晶粒就连成网络而阻塞流动,
大部分结晶潜热的作用不能发挥,所以对流动性影
响不大。但是,也有例外的情况,当初生晶为非金
属,或者合金能在液相线温度以下以液固混合状
态,在不大的压力下流动时,结晶潜热则可能是个
重要的因素。例如,在相同的过热度下AlSi合金的流动性,在共晶成分处并非大值,而
在过共晶区里继续增加 (图121),就是因为初生硅相是比较规整的块状晶体,且具有较小
的机械强度,不形成坚强的网络,能够以液固混合状态在液相线温度以下流动。
3.凝固方式对铸件质量的影响
铸件的致密性和健全性与合金的凝固
方式密切相关。由上节所述可知,在铸件断面温度场相近的情况下,无论何种合金,它们的
结晶温度范围的大小对凝固方式的影响有共同的规律性。根据结晶温度范围将合金分为窄结
晶温度范围合金、宽结晶温度范围合金和中等结晶温度范围合金三种类型。
由于纯金属、共晶成分合金和窄结晶温度范围的合金在一般的铸造条件下是以逐层方式
凝固的,其凝固前沿直接与液态金属接触。当液态金属凝固成为固体而发生体积收缩时,可
以不断地得到液体的补充,所以产生分散性缩松的倾向性小。
3表面张力引起的附加压力
假设液体中有一半径为r的球形气泡,
由于液体表面张力造成了指向内部的力p
(图113)。若将球的体积增大ΔV,则必须
克服阻力p而对它做功:ΔW=pΔV。而
这一所做之功变为表面积增大后的表面自
由能增量:ΔF=σΔS(ΔS为球体增大之表面积)
由此可见,因表面张力而造成的附加压力p的大小与曲率半径r成反比。则r1=r2=r。附加压力p也称拉普拉斯压力。
如液面凸起 (不润湿),附加压力为正值,液面下凹 (润湿),附加压力为负值,如图
4所示。造型材料一般不被液态金属润湿,即θ>90°(θ为润湿角)。故液态金属在铸型
道内的表面是凸起的,如图115所示,此时产生指向内部的附加压力。