晶体中每个原子皆在平衡位置附近振动 (即所谓热振
动),温度升高时振动能量增加,振动频率和振幅加大。
以双原子为模型 (图12),假设左边的原子在坐标原点被
固定,而右边的原子是自由的。当温度升高时,右边自由
振动原子的振幅增大,此时,若该原子以R0 为原点作简谐振动,则其平衡位置仍是R0,这
样就不会发生膨胀。但势能曲线向右是水平渐近线,向左是垂直渐近线,是极不对称的。
熔化潜热使晶粒瓦解,液体原子具有更高
的能量,而金属的温度并不升高。从热力学角度,在恒压时,外界所供给的潜热,除使体积
膨胀做功外,还增加系统的内能,如式(11)所示。在等温等压下,熵值的增量如式(12)
所示。
系统熵值增加表示原子排列发生紊乱。因此,熔化过程就是金属从规则的原子排列突变
为紊乱的非晶态结构的过程。
2液态金属的结构
(1)从物质熔化 (汽化)过程对液态金属结构的认识 如表11所示,金属物质熔化时
的体积一般仅增加3%~5%,即原子平均间距仅增加1%~15%,熔化时的熵值变化量远
小于加热膨胀过程。
四、铸件的凝固方式
1凝固区域及其结构
铸件在凝固过程中,除纯金属和共晶成分合金外,断面上一般都存在三个区域,即固相
区、凝固区和液相区。铸件的质量与凝固区域有密切关系。
图132 凝固区域结构示意图
图132是凝固区域结构的示意图 (另一半与之
对称)。凝固区域又可划分为两个部分。液相占优
势的液固部分和固相占优势的固液部分。在液固部
分中,晶体处于悬浮状态而未连成一片,液相可以
自由移动。用倾出法做实验时,晶体能够随同液态
金属一起被倾出。