(2)合理的熔炼工艺 正确选择原材料,去除金属上的锈蚀,油污,熔剂烘干,在熔炼
程中尽量使金属液不接触或少接触有害气体;对某些合金充分脱氧或精炼去气,减少其中
非金属夹杂物和气体。多次熔炼的铸铁和废钢,由于其中含有较多的气体,应尽量减少用
;采用 “高温出炉,低温浇注”工艺等。
2铸型性质方面的因素
铸型的阻力影响金属液的充型速度,铸型与金属的热交换强度影响金属液保持流动的时
。所以,铸型性质方面的因素对金属液的充型能力有重要的影响。同时,通过调整铸型性
来改善金属的充型能力,也往往能得到较好的效果。
实际金属比上述现象复杂得多,因为工业应用的金属主要是合金,而且是多元合金;原9
材料中存在多种多样的杂质,有些杂质的化学分析值虽然不高,甚至低于10-4数量级,但
其原子数仍是惊人的;在熔化过程中,金属与炉气、熔剂、炉衬的相互作用还会吸收气体带
进杂质,甚至带入许多固、液体质点。因此,实际金属的液态结构是非常复杂的。它也存在
着游动原子集团、空穴以及能量起伏,在原子集团和空穴中溶有各种各样的合金元素及杂质
元素,由于化学键力和原子间结合力的不同,还存在着浓度起伏以至成分和结构不同的游动
原子集团。
(2)铸型性质的影响 铸件在铸型中的凝固是因铸型吸热而进行的。所以,任何铸件的
凝固速度都受铸型吸热速度的支配。铸型的吸热速度越大,则铸件的凝固速度越大,断面上
的温度场的梯度也就越大。铸型的蓄热系数 (b2)越大,对铸件的冷却能力越强,铸件中的
温度梯度就越大。铸型预热温度越高,冷却作用就越小,铸件断面上的温度梯度也就越小。
(3)浇注条件的影响 液态金属的浇注温度很少超过液相线以上100℃,因此,金属由
于过热所得到的热量比结晶潜热要小得多,一般不大于凝固期间放出的总热量的5%~6%。
但是,实验证明,在砂型铸造中非等到液态金属的所有过热量全部散失。