在一些化学亲和力较强的元素的原子之间还可能形成不稳定的 (临时的)或稳定
的化合物。这些化合物可能以固态、气态或液态出现,有一部分在液态金属的保持过程中上
浮或下沉,而有相当一部分则悬浮于液态金属中,成为夹杂物 (多数为非金属夹杂物)。
总之,实际金属和合金的液体在微观上是由成分和结构不同的游动原子集团、空穴和许
多固态、气态或液态杂质或化合物组成,而且还表现出能量起伏、结构起伏及浓度起伏等三
种起伏特征。
② 晶体缺陷模型 包括微晶模型、空穴模型、位错模
或综合模型等,假设液态金属同样存在与固相类似的晶
缺陷,能定性地解释过热度不大的液态金属结构特征
接受。该模型认为,液态金属中存在 “能量起伏”和 “结
处于热运动的原子能量有高有低,同一原子的能量也随时
间不停变化,时高时低,这种现象称之为 “能量起伏”。另一方面,液态金属中存在由大量
不停 “游动”着的原子集团组成,集团内为某种有序结构,处于集团外的原子则处于散乱的
无序状态;并且这些原子集团不断的分化组合,时而长大,时而减小,时而产生,时而消失。
对于铸件温度场的影响,可从金属性质、铸型性质、浇注条件及铸件结构四个方面来
析。
(1)金属性质的影响 金属的热扩散率大,铸件内部的温度均匀化的能力就大,温度梯
就小,断面上温度分布曲线就比较平坦;反之,温度分布曲线就比较峻陡。金属的结晶潜
大,向铸型传热的时间则要长,铸型内表面被加热的温度也高,铸件断面的温度梯度减
,铸件的冷却速度下降,温度场也较平坦。金属的凝固温度越高,在凝固过程中铸件表面
铸型内表面的温度越高,铸型内外表面的温差就越大,且铸型的热导率在高温段随温度的
高而升高,致使铸件断面的温度场有较大的梯度。