可以看到,液态铝中的原子的排列在几个原子间距的小范围内,与其固态铝原子的排列
图15 700℃时液态Al中原子分布曲线
[当r→∞时,ρ(r)→ρ0,表示
较大体积中的原子平均密度
(相当于非晶态材料)]
方式基本一致,呈现出一定的有规则排列;而距离远的原子
排列就不同于固态了,表现为无序状态。这也是液态金属结
构的主要特征,称之为 “近程有序”、“远程无序”结构。
(3)液态金属结构的理论模型 对液态金属结构的理
论描述至今还没有一个公认的、系统的、科学的模型。以
下就几类典型模型做简要介绍。
二、黏滞性及其对成型过程的影响
1黏滞性的本质
液态金属的黏滞性 (也称黏度)对其充型过程、液态金属中的气体及非金属夹杂物的排
除、一次结晶的形态、偏析的形成等,都有直接或间接的作用。
如图17所示,当外力F(x)作用于液体表面时,由于质点间作用力引起的内摩擦力,
使得最表面的一层移动速度大于第二层,而第二层的移动速度大于第三层。
由式(15)可知,黏度与δ
3 成反比,与正比。能反映了原子间结合力
的强弱,而原子间距离也与结合力有关。因此,黏滞性的本质是质点间 (原子间)结合力的大小。
显然,根据形成表面张力的原因可以推知,不仅在上述的液气界面,
而且在所有两相界面,如固气、液固、液液上都存在表面张力。故广义地说,表面
张力应称为界面张力,可分别用σ固气 、σ液固 、σ液液 表示之,不特别指明时,通常皆指
与气相的界面张力。
衡量界面张力的标志是润湿角θ,它与界面张力的关系由杨氏方程决定。
式(112)称为杨氏方程式,可以看出,接触
θ的值与各界面张力的相对值有关,如图110。
①σSG>σLS时,cosθ为正值,即θ<90°。通θ为锐角的情况,称为液体能润湿固体。θ=
,液体在固体表面铺展成薄膜,称为完全。