这就意味着当温度升高,能量从W0→W1→W2→W3→W4 时,其间距 (振幅中心位置)将由
R0→R1→R2→R3→R4。也就是说,原子间距离将随温度的升高而增加,即产生热膨胀。另
一方面,空穴的产生也是物体膨胀的原因之一。由于能量起伏,一些原子则可能越过势垒跑
到原子之间的间隙中或金属表面,而失去大量能量,在新的位置上作微小振动 (图13)。
有机会获得能量,又可以跑到新的位置上。如此下去,它可以在整个晶体中 “游动”,这个
过程称为内蒸发。原子离开点阵后,留下了自由点阵———空穴。
(1)铸型的蓄热系数 铸型的蓄热系数b2 (b2= c2ρ2λ槡2)表示铸型从其中的金属中吸
取并储存于本身中热量的能力。蓄热系数b2
越大,铸型的激冷能力就越强,金属液于其中
保持液态的时间就越短,充型能力下降。金属型铸造中,经常采用涂料调整其蓄热系数b2
。
为使金属型浇口和冒口中的金属液缓慢冷却,常在一般的涂料中加入b2
很小的石棉粉。
(2)铸型的温度 预热铸型能减小金属与铸型的温差,从而提高其充型能力。例如,在
金属型中浇注铝合金铸件,将铸型温度由340℃提高到520℃,在相同的浇注温度 (760℃)
下,螺旋线长度由525mm增加到950mm。在熔模铸造中,为得到清晰的铸件轮廓,可将型
壳焙烧到800℃以上进行浇注或利用型壳焙烧刚结束的高温余热进行浇注。
图131(b)左边的曲线与铸件断面上各时刻的液相等温线相对应,称为 “液相边界”,
右边的曲线与固相等温线相对应,称为 “固相边界”。从图131(b)可以看出,时间为2min
时,距铸件表面x/R=06处合金开始凝固,由该处至铸件中心的合金仍为液态 (液相区);
x/R=02处合金刚刚凝固完了,从该处至铸件表面的合金为固态 (固相区),二者之间是
液固两相区 (凝固区)。到32min时,液相区消失。经过53min,铸件壁凝固完毕。所
以,图131(b)的两条曲线是表示铸件断面上液相和固相等温线由表面向中心推移的动态
曲线。“液相线”边界从铸件表面向中心移动,所到之处凝固就开始;