(3)铸型中的气体 铸型有一定的发气能力,能在金属液与铸型之间形成气膜,可减小
的摩擦阻力,有利于充型。
根据实验,湿型中加入质量分数小于6%的水和小于7%的煤粉时,液态金属的充型能
高,高于此值时型腔中气体反压力增大,充型能力下降,如图122所示。型腔中气体
91
反压力较大的情况下,金属液可能浇不进去,或者浇
口杯、顶冒口中出现翻腾现象,甚至飞溅出来伤人。
所以,铸型中的气体对充型能力影响很大。
可以看出,铸件的温度场随时间而变化,为不稳定温度场。铸件断面上的温度场
也称温度分布曲线。如果铸件均匀壁两侧的冷却条件相同,则任何时刻的温度分布曲线
对铸件壁厚的轴线是对称的。温度场的变化速率,即为表征铸件冷却强度的温度梯度。
温度场能更直观地显示出凝固过程的情况。
图131所示是铸件的凝固动态曲线,也是根据直接测量的温度时间曲线绘制的:首先
图131(a)上给出合金的液相线和固相线温度,把二直线与温度时间曲线相交的各点分
标注在图131(b)(x/R,τ)坐标系上,再将各点连接起来,即得凝固动态曲线。纵坐标
子x是铸件表面向中心方向的距离,分母R是铸件壁厚之半或圆柱体和球体的半径。因
固是从铸件壁两侧同时向中心进行,所以x/R=1表示已凝固至铸件中心。
因此,实际金属和合金的液体结构中存在着两种起伏:一种是能
量起伏,表现为各个原子间能量的不同和各个原子集团间尺寸的不同;另一种是浓度起伏,
表现为各个原子集团之间成分的不同。
如果AB原子间的结合力较强,则足以在液体中形成新的化学键,在热运动的作用下,
出现时而化合,时而分解的分子,也可称为临时的不稳定化合物,或者在低温时化合,在高
温时分解。例如,硫在铁液中高温时可以完全溶解,而在较低温度下则可能析出FeS。当
AB原子间或同类原子间结合非常强时,则可以形成比较强而稳定的结合,在液体中就出现
新的固相 (如氧在铝中形成Al2O3,氧与铁中的硅形成SiO2 等)或气相。