;铸件在凝固过程中又不断地释放出结晶潜
热,其断面上存在着已凝固完毕的固态外壳、液固态并存的凝固区域和液态区,在金属型中
凝固时还可能出现中间层。因此,铸件与铸型的传热是通过若干个区域进行的,此外,铸型
和铸件的热物理参数还都随温度而变化,不是固定的数值等。将这些因素都考虑进去,建立
一个符合实际情况的微分方程式是很困难的。因此,用数学分析法研究铸件的凝固过程时,
必须对过程进行合理的简化。
在铸件和铸型的不稳定导热过程中,温度与时间和空间的关系可用傅里叶导热微分方程
描述:
可以看出,铸件的温度场随时间而变化,为不稳定温度场。铸件断面上的温度场
也称温度分布曲线。如果铸件均匀壁两侧的冷却条件相同,则任何时刻的温度分布曲线
对铸件壁厚的轴线是对称的。温度场的变化速率,即为表征铸件冷却强度的温度梯度。
温度场能更直观地显示出凝固过程的情况。
图131所示是铸件的凝固动态曲线,也是根据直接测量的温度时间曲线绘制的:首先
图131(a)上给出合金的液相线和固相线温度,把二直线与温度时间曲线相交的各点分
标注在图131(b)(x/R,τ)坐标系上,再将各点连接起来,即得凝固动态曲线。纵坐标
子x是铸件表面向中心方向的距离,分母R是铸件壁厚之半或圆柱体和球体的半径。因
固是从铸件壁两侧同时向中心进行,所以x/R=1表示已凝固至铸件中心。
。这是由于难熔化合物的结合
力强,在冷至熔点之前就及早地开始了原子集聚。对于
共晶成分合金,异类原子间不发生结合,而同类原子聚
合时,由于异类原子的存在所造成的阻碍,使它们聚合
缓慢,晶胚的形成滞后,故黏度较非共晶成分的低。
(3)夹杂 液态合金中呈固态的非金属夹杂物的存
在使液态合金成为不均匀的多相系统,液体流动时内摩
擦力增加。造成液态合金的黏度增加,如钢中的硫化锰、
氧化铝、氧化硅等。