3表面张力引起的附加压力
假设液体中有一半径为r的球形气泡,
由于液体表面张力造成了指向内部的力p
(图113)。若将球的体积增大ΔV,则必须
克服阻力p而对它做功:ΔW=pΔV。而
这一所做之功变为表面积增大后的表面自
由能增量:ΔF=σΔS(ΔS为球体增大之表面积)
由此可见,因表面张力而造成的附加压力p的大小与曲率半径r成反比。则r1=r2=r。附加压力p也称拉普拉斯压力。
如液面凸起 (不润湿),附加压力为正值,液面下凹 (润湿),附加压力为负值,如图
4所示。造型材料一般不被液态金属润湿,即θ>90°(θ为润湿角)。故液态金属在铸型
道内的表面是凸起的,如图115所示,此时产生指向内部的附加压力。
2流动性的测定
由于影响液态金属充型能力的因素很多 (后述),在工程应用及研究中,不能笼统地对
各种合金在不同的铸造条件下的充型能力进行比较。通常用相同实验条件下所测得的合金流
动性表示合金的充型能力。因此,可以认为合金的流动性是在确定条件下的充型能力。液态
金属的流动性是用浇注 “流动性试样”的方法衡量的。在实际中,是将试样的结构和铸型性
质固定不变,在相同的浇注条件下,例如在液相线以上相同的过热度或在同一的浇注温度
下,浇注各种合金的流动性试样,以试样的长度或以试样某处的厚薄程度表示该合金的流动
性。对于同一种合金,也可以用流动性试样研究各铸造因素对其充型能力的影响。
一、液态金属的结构
人们对液态金属结构的认识滞后于固体金属,这是因为它是以液体这样一个无序体系作
为研究对象。近年来,利用X射线、电子和中子衍射及同步辐射技术得到液态金属及合金
直接的结构信息,促进了液体金属物理研究的不断深入。通过两种方法可以研究金属的液态
结构。一种是间接方法,即通过固→液态、固→气态转变后一些物理性质的变化判断液态的
原子结合状况,另一种是较为直接的方法,即通过液态金属的X射线或中子线的结构分析
研究液态的原子排列情况。在了解液态金属的结构之前,有必要对金属晶体的原子结合、加
热膨胀及熔化过程加以阐述。