方程式(118)给出的是各参量之间的最普遍关系,它可以确定一切固体内的导热现象。
因此,导热微分方程可以用来确定铸件和铸型的温度场。由于导热微分方程式是一个基本方
程式,用它来解决某一具体问题时,为了使方程式的解
确实成为该具体问题的解,就必须对基本方程式补充一
些附加条件。这些附加条件就是一般所说的单值性条件。
它们把所研究的特殊问题从普遍现象中区别出来。
在不稳定导热(tτ≠0)的情况下,导热微分方程的解
具有非常复杂的形式。目前只能用来解决某些特殊的问
题。例如,对于形状最简单的物体 (如平壁、圆柱、
球),它们的温度场都是一维的,可以得到解决。
表明液体的原子间距接近固体,在熔点附近其系统的混乱度只是稍大于
固体而远小于气体的混乱度。表12为一些金属的熔化潜热和汽化潜热。如果说汽化潜热
(固→气)是使原子间的结合键全部破坏所需的能量,则熔化潜热只有汽化潜热的3%~7%,
即固→液时,原子的结合键只破坏了百分之几。因此,可以认为液态和固态的结构是相似
的,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子仍然具有一定的规律性,
特别是在金属过热度不太高 (一般高于熔点100~300℃)的条件下更是如此。需要指出的
是,在接近汽化点时,液体与气体的结构往往难以分辨,说明此时液体的结构更接近于
气体。
四、铸件的凝固方式
1凝固区域及其结构
铸件在凝固过程中,除纯金属和共晶成分合金外,断面上一般都存在三个区域,即固相
区、凝固区和液相区。铸件的质量与凝固区域有密切关系。
图132 凝固区域结构示意图
图132是凝固区域结构的示意图 (另一半与之
对称)。凝固区域又可划分为两个部分。液相占优
势的液固部分和固相占优势的固液部分。在液固部
分中,晶体处于悬浮状态而未连成一片,液相可以
自由移动。用倾出法做实验时,晶体能够随同液态
金属一起被倾出。