如果因铸件断面温度场较平坦 [图134(a)],或合金的结晶温度范围很宽 [图134
(b)],铸件凝固的某一段时间内,其凝固区域在某时刻贯穿整个铸件断面时,则在凝固区
域里既有已结晶的晶体也有未凝固的液体,这种情况为 “体积凝固方式”,或称 “糊状凝固
方式”。
如果合金的结晶温度范围较窄 [图135(a)],或者铸件断面的温度梯度较大 [图135
图135 “中间凝固方式”示意图
(b)],铸件断面上的凝固区域宽度介于前
二者之间时,则属于 “中间凝固方式”。
凝固区域的宽度可以根据凝固动态曲
线上的 “液相边界”与 “固相边界”之间
的纵向距离直接判断。因此,这个距离的
大小是划分凝固方式的一个准则。如果两
条曲线重合在一起———恒温下结晶的金属,
或者其间距很小,则趋向于逐层凝固方式。
(3)铸型中的气体 铸型有一定的发气能力,能在金属液与铸型之间形成气膜,可减小
的摩擦阻力,有利于充型。
根据实验,湿型中加入质量分数小于6%的水和小于7%的煤粉时,液态金属的充型能
高,高于此值时型腔中气体反压力增大,充型能力下降,如图122所示。型腔中气体
91
反压力较大的情况下,金属液可能浇不进去,或者浇
口杯、顶冒口中出现翻腾现象,甚至飞溅出来伤人。
所以,铸型中的气体对充型能力影响很大。
采用某一种结构的流动性试样,改变型砂的水分、煤粉含量、浇注温度、直浇道高度等因素中
的一个因素,以判断该变动因素对充型能力的影响。各种测定合金流动性的试样都可用以测
定合金的充型能力。
流动性试样的类型很多,如螺旋形、球形、U形、楔形、竖琴形、真空试样 (即用真
空吸铸法)等。在生产和科学研究中应用最多的是螺旋形试样,如图116所示,其优点是
灵敏度高、对比形象、可供金属液流动相当长的距离 (如15m),而铸型的轮廓尺寸并不太
大。缺点是金属流线弯曲,沿途阻力损失较大,流程越长,散热越多。