表明液体的原子间距接近固体,在熔点附近其系统的混乱度只是稍大于
固体而远小于气体的混乱度。表12为一些金属的熔化潜热和汽化潜热。如果说汽化潜热
(固→气)是使原子间的结合键全部破坏所需的能量,则熔化潜热只有汽化潜热的3%~7%,
即固→液时,原子的结合键只破坏了百分之几。因此,可以认为液态和固态的结构是相似
的,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子仍然具有一定的规律性,
特别是在金属过热度不太高 (一般高于熔点100~300℃)的条件下更是如此。需要指出的
是,在接近汽化点时,液体与气体的结构往往难以分辨,说明此时液体的结构更接近于
气体。
四、铸件的凝固方式
1凝固区域及其结构
铸件在凝固过程中,除纯金属和共晶成分合金外,断面上一般都存在三个区域,即固相
区、凝固区和液相区。铸件的质量与凝固区域有密切关系。
图132 凝固区域结构示意图
图132是凝固区域结构的示意图 (另一半与之
对称)。凝固区域又可划分为两个部分。液相占优
势的液固部分和固相占优势的固液部分。在液固部
分中,晶体处于悬浮状态而未连成一片,液相可以
自由移动。用倾出法做实验时,晶体能够随同液态
金属一起被倾出。
(2)铸型性质的影响 铸件在铸型中的凝固是因铸型吸热而进行的。所以,任何铸件的
凝固速度都受铸型吸热速度的支配。铸型的吸热速度越大,则铸件的凝固速度越大,断面上
的温度场的梯度也就越大。铸型的蓄热系数 (b2)越大,对铸件的冷却能力越强,铸件中的
温度梯度就越大。铸型预热温度越高,冷却作用就越小,铸件断面上的温度梯度也就越小。
(3)浇注条件的影响 液态金属的浇注温度很少超过液相线以上100℃,因此,金属由
于过热所得到的热量比结晶潜热要小得多,一般不大于凝固期间放出的总热量的5%~6%。
但是,实验证明,在砂型铸造中非等到液态金属的所有过热量全部散失。