②σSG<σLS时,cosθ为负值,即θ>90°。此情况下,液体倾向于形成球状,称之为液体能润湿固体。θ=180°为完全不润湿。
2影响界面张力的因素
(1)熔点 原子间结合力大的物质,其熔点高,表面张力也大。表13为几种金属的熔和表面张力。
(2)温度 对于多数金属和合金,
度升高,表面张力降低,即dσdt<0。这因为,温度升高时,液体质点间距增,表面质点的受力不对称性减弱,因表面张力降低。当达到液体的临界温时,由于气液两相界面消失,表面张等于零。但是,对于某些合金,如铸
、碳钢、铜及其合金等,其表面张力随温度的升高而增大,即dσdt>0。如图1所示。
可以看到,液态铝中的原子的排列在几个原子间距的小范围内,与其固态铝原子的排列
图15 700℃时液态Al中原子分布曲线
[当r→∞时,ρ(r)→ρ0,表示
较大体积中的原子平均密度
(相当于非晶态材料)]
方式基本一致,呈现出一定的有规则排列;而距离远的原子
排列就不同于固态了,表现为无序状态。这也是液态金属结
构的主要特征,称之为 “近程有序”、“远程无序”结构。
(3)液态金属结构的理论模型 对液态金属结构的理
论描述至今还没有一个公认的、系统的、科学的模型。以
下就几类典型模型做简要介绍。
② 晶体缺陷模型 包括微晶模型、空穴模型、位错模
或综合模型等,假设液态金属同样存在与固相类似的晶
缺陷,能定性地解释过热度不大的液态金属结构特征
接受。该模型认为,液态金属中存在 “能量起伏”和 “结
处于热运动的原子能量有高有低,同一原子的能量也随时
间不停变化,时高时低,这种现象称之为 “能量起伏”。另一方面,液态金属中存在由大量
不停 “游动”着的原子集团组成,集团内为某种有序结构,处于集团外的原子则处于散乱的
无序状态;并且这些原子集团不断的分化组合,时而长大,时而减小,时而产生,时而消失。