这些杂质往往不只是一种,而是多种多样的,它们在液体中不会很均匀地分布。它们的存在方式也是不同的,有的以溶质方式,有的与其他原子形成某些化合物 (液态、固态或气态的夹杂物)。下面先就一个最简单的模型作一分析,假定液体中只存在一种杂质原子。当金属中存在第二种原子时 (如合金),情况就复杂多了。由于同种元素及不同元素之间的原子间结合力是不同的,结合力较强的原子容易聚集在一起,把别的原子排挤到别处。因此,在游动集团中有的A种原子多,有的B种原子多,即游动集团之间存在着成分不均匀性,称为 “浓度起伏”。
1金属晶体中的原子结合、加热膨胀、熔化
晶体的结构和性能主要决定于组成晶体的原子结构和它们之间的相互作用力与热运动。
各种不同的晶体其结合力的类型和大小是不同的。但是在任何晶体中,两个原子间的相互作
图11 A、B原子作用力F和
势能W 与原子间距R的关系
用力或相互作用势能与它们之间距离的关系在性质上是相同的,如图11所示。图11(a)
表示原子间相互作用力F随原子间距离R的变化规律。当两个原子相距无穷远时,相互作
用力为零,当两原子靠近时,原子间产生吸引力 (F<0),
并随距离的缩短而增大。随着距离的继续缩短,到达R=
R1 时,吸引力大。
可以看出,铸件的温度场随时间而变化,为不稳定温度场。铸件断面上的温度场
也称温度分布曲线。如果铸件均匀壁两侧的冷却条件相同,则任何时刻的温度分布曲线
对铸件壁厚的轴线是对称的。温度场的变化速率,即为表征铸件冷却强度的温度梯度。
温度场能更直观地显示出凝固过程的情况。
图131所示是铸件的凝固动态曲线,也是根据直接测量的温度时间曲线绘制的:首先
图131(a)上给出合金的液相线和固相线温度,把二直线与温度时间曲线相交的各点分
标注在图131(b)(x/R,τ)坐标系上,再将各点连接起来,即得凝固动态曲线。纵坐标
子x是铸件表面向中心方向的距离,分母R是铸件壁厚之半或圆柱体和球体的半径。因
固是从铸件壁两侧同时向中心进行,所以x/R=1表示已凝固至铸件中心。