还可以把固液部分划分为两个
带。在右边的带里,晶体已经连成骨架,但是液体
还能在其间移动。在左边的带里,因为已接近固相
线温度,固相占绝大部分,并已连结成为牢固的晶
体骨架,存在于骨架之间的少量液体被分割成一个
个互不沟通的小 “溶池”(图中的黑点)。当这些小
溶池进行凝固而发生体积收缩时,得不到液体的补
充。固液部分中两个带的边界叫 “补缩边界”。以
上是某一瞬间的凝固情景。在铸件的凝固过程中,凝固区域按动态曲线所示的规律向铸件中心推进。
(2)结晶潜热 结晶潜热约占液态金属热含量的85%~90%,但是,它对不同类型合
图120 纯金属流动性
(金属型中浇注,试样断面积110mm
2)金的流动性影响是不同的。纯金属和共晶成分的合
金在固定温度下凝固,在一般的浇注条件下,结晶
潜热的作用能够发挥,是估计流动性的一个重要因
素。凝固过程中释放的潜热越多,则凝固进行得越
缓慢,流动性就越好。将具有相同过热度的纯金属
浇入冷的金属型试样中,其流动性与结晶潜热相对
应:Pb的流动性最差,Al的流动性好,Zn、Sb、
Cd、Sn依次居于中间,如图120所示。
(5)表面张力 表面张力对薄壁铸件、铸件的细薄
部分和棱角的成型有影响。型腔越细薄,棱角的曲率半
径越小,表面张力的影响越大。为克服附加压力的阻碍,
必须在正常的充型压头上增加一个附加压头h。
因此,为提高液态金属的充型能力,在金属方面可
采取以下措施。
(1)正确选择合金的成分 在不影响铸件使用性能的情况下,可根据铸件大小,厚薄和
铸型性质等因素,将合金成分调整到实际共晶成分附近,或选用结晶温度范围小的合金。对
某些合金进行变质处理使晶粒细化,也有利于提高其充型能力。