在一些化学亲和力较强的元素的原子之间还可能形成不稳定的 (临时的)或稳定
的化合物。这些化合物可能以固态、气态或液态出现,有一部分在液态金属的保持过程中上
浮或下沉,而有相当一部分则悬浮于液态金属中,成为夹杂物 (多数为非金属夹杂物)。
总之,实际金属和合金的液体在微观上是由成分和结构不同的游动原子集团、空穴和许
多固态、气态或液态杂质或化合物组成,而且还表现出能量起伏、结构起伏及浓度起伏等三
种起伏特征。
三、表面张力及其对成型过程的影响
1表面张力的实质
表面张力是表面上存在的一个平行于表面且各向大小相等的张力。表面张力是由于物质
在表面上的质点受力不均匀而产生的。对于液体和气体界面上的质点 (原子或分子),由于
液体的密度大于气体的密度,故气相对它的作用力远小于液体内部对它的作用力,使表面层
质点处于不平衡的力场之中。结果是表面层质点受到一个指向液体内部的力,使液体表面有
自动缩小的趋势。
从物理化学可知,表面自由能是产生新的单位面积表面时系统自由能的增量。设恒温、
恒压下表面自由能的增量为ΔF,表面自由能为σ。
如果因铸件断面温度场较平坦 [图134(a)],或合金的结晶温度范围很宽 [图134
(b)],铸件凝固的某一段时间内,其凝固区域在某时刻贯穿整个铸件断面时,则在凝固区
域里既有已结晶的晶体也有未凝固的液体,这种情况为 “体积凝固方式”,或称 “糊状凝固
方式”。
如果合金的结晶温度范围较窄 [图135(a)],或者铸件断面的温度梯度较大 [图135
图135 “中间凝固方式”示意图
(b)],铸件断面上的凝固区域宽度介于前
二者之间时,则属于 “中间凝固方式”。
凝固区域的宽度可以根据凝固动态曲
线上的 “液相边界”与 “固相边界”之间
的纵向距离直接判断。因此,这个距离的
大小是划分凝固方式的一个准则。如果两
条曲线重合在一起———恒温下结晶的金属,
或者其间距很小,则趋向于逐层凝固方式。