当dσdt<0,即溶质浓度增加,引起表面张力减少时,Γ>0,为正吸附。dσdt>0,即溶质
增加,引起表面张力增大时,Γ<0,为负吸附。由此可知,所谓正吸附就是溶质元素
面上的浓度大于在液体内部的浓度,负吸附则是溶质元素在表面上的浓度小于在内部的
。因此,表面活性物质具有正吸附作用;而非表面活性物质具有负吸附作用。
溶质的原子体积大于溶剂的原子体积时,由于它对溶剂晶格的歪曲,使势能增加。但
系统总是向减小自由能方向自发进行,因而,这些体积较大的原子总是倾向于被排挤到
,在表面富集———正吸附。由于这些原子体积大,表面张力低,使整个系统的表面张力
。这也可以用表面层原子受力不对称性程度加以解释。
三、表面张力及其对成型过程的影响
1表面张力的实质
表面张力是表面上存在的一个平行于表面且各向大小相等的张力。表面张力是由于物质
在表面上的质点受力不均匀而产生的。对于液体和气体界面上的质点 (原子或分子),由于
液体的密度大于气体的密度,故气相对它的作用力远小于液体内部对它的作用力,使表面层
质点处于不平衡的力场之中。结果是表面层质点受到一个指向液体内部的力,使液体表面有
自动缩小的趋势。
从物理化学可知,表面自由能是产生新的单位面积表面时系统自由能的增量。设恒温、
恒压下表面自由能的增量为ΔF,表面自由能为σ。
空穴的产生使局部地区能垒
降低,邻近的原子则进入空穴位置,造成空穴的移动。温度愈高,原子的能量愈大,产生的
空穴数目愈多,从而使金属膨胀。在熔点附近,空穴数目可达原子总数的10%。
当把金属加热到熔点时,会使金属的体积突然膨胀3%~5%。这个数值等于固态金属
力学温度零度加热到熔点前的总膨胀量。除此之外,金属的其他性质如电阻、黏性等在
度下发生突变。同时,这种突变还反映在熔化潜热上,即金属在此时吸收大量热量,温
不升高。这些突变现象是不能仅仅用离位原子和空穴数目的增加加以解释的。