②σSG<σLS时,cosθ为负值,即θ>90°。此情况下,液体倾向于形成球状,称之为液体能润湿固体。θ=180°为完全不润湿。
2影响界面张力的因素
(1)熔点 原子间结合力大的物质,其熔点高,表面张力也大。表13为几种金属的熔和表面张力。
(2)温度 对于多数金属和合金,
度升高,表面张力降低,即dσdt<0。这因为,温度升高时,液体质点间距增,表面质点的受力不对称性减弱,因表面张力降低。当达到液体的临界温时,由于气液两相界面消失,表面张等于零。但是,对于某些合金,如铸
、碳钢、铜及其合金等,其表面张力随温度的升高而增大,即dσdt>0。如图1所示。
(2)结晶潜热 结晶潜热约占液态金属热含量的85%~90%,但是,它对不同类型合
图120 纯金属流动性
(金属型中浇注,试样断面积110mm
2)金的流动性影响是不同的。纯金属和共晶成分的合
金在固定温度下凝固,在一般的浇注条件下,结晶
潜热的作用能够发挥,是估计流动性的一个重要因
素。凝固过程中释放的潜热越多,则凝固进行得越
缓慢,流动性就越好。将具有相同过热度的纯金属
浇入冷的金属型试样中,其流动性与结晶潜热相对
应:Pb的流动性最差,Al的流动性好,Zn、Sb、
Cd、Sn依次居于中间,如图120所示。
2影响黏度的因素
(1)温度 如式(15)所示,液体的黏度在温度不太高时,式中的指数项比乘数项的影响
,即温度升高,η值下降。在温度很高时,指数项趋近于1,乘数项将起主要作用,即温度
高,η值增大,但这已是接近气态的情况。图18为常用金属动力黏度与温度的关系。
(2)熔点 黏度反映原子间结合力的强弱,与熔点有共同性。因此,合金成分的改变也
定着黏度的大小,图19即为 MgSn系合金的相图与
度的关系。可见,难熔化合物的黏度较高,而熔点低
共晶成分合金其黏度低。