这种现象称为 “结构起伏”。在一定的温度下,虽然存在 “能量起伏”和
“结构起伏”现象,但对于特定液态金属,其处于有序状态的原子集团具有一定的统计平均
尺寸;并且其平均尺寸大小随温度的升高而减小。
③ 液态结构及离子间相互作用的理论描述 在液态结构定量计算上,也提出了许多理
图16 液态结构及粒子间相互作用
论模型及方程 (图16)。通过建立偶分布函数
g(r)与偶势u(r)(即 “原子对”间的相互作用
势能与原子空间距离r的函数关系)的方程,或
在已知偶势u(r)的条件下,计算出某一液体的
偶分布函数g(r)。
(2)充型压头 液态金属在流动方向上所受的压力越大,充型能力就越好。在生产中,
用增加金属液静压头的方法提高充型能力,也是经常采取的工艺措施。用其他方式外加压
力,如压铸、低压铸造、真空吸铸等,也都能提高金属液的充型能力。
(3)浇注系统的结构 浇注系统越复杂,流动阻力越大,在静压头相同的情况下,充型
能力就越差。
4铸件结构方面的因素
衡量铸件结构特点的因素是铸件的折算厚度 (换算厚度,当量厚度、模数)和复杂程
度,它们决定了铸型型腔的结构特点。如果铸件的体积相同,在同样的浇注条件下,折算厚
度大的铸件。
故金属的流动条件和温度条件都在随时改变,这必然影响到所测流动性的准确度;各次试验所用铸型条件也很难
精控制;每做一次试验要造一次铸型。在生产和科研中螺旋形试样应用较多。真空试样如
图117所示,它的优点是铸型条件和液态金属的充型压头稳定,真空度可以随液态金属的
密度不同而改变,使各种金属能在相同的压头下充填,从而增加了试验结果的对比性,可以
观察充填过程,记录流动长度与时间的关系。