采用某一种结构的流动性试样,改变型砂的水分、煤粉含量、浇注温度、直浇道高度等因素中
的一个因素,以判断该变动因素对充型能力的影响。各种测定合金流动性的试样都可用以测
定合金的充型能力。
流动性试样的类型很多,如螺旋形、球形、U形、楔形、竖琴形、真空试样 (即用真
空吸铸法)等。在生产和科学研究中应用最多的是螺旋形试样,如图116所示,其优点是
灵敏度高、对比形象、可供金属液流动相当长的距离 (如15m),而铸型的轮廓尺寸并不太
大。缺点是金属流线弯曲,沿途阻力损失较大,流程越长,散热越多。
(2)铸型性质的影响 铸件在铸型中的凝固是因铸型吸热而进行的。所以,任何铸件的
凝固速度都受铸型吸热速度的支配。铸型的吸热速度越大,则铸件的凝固速度越大,断面上
的温度场的梯度也就越大。铸型的蓄热系数 (b2)越大,对铸件的冷却能力越强,铸件中的
温度梯度就越大。铸型预热温度越高,冷却作用就越小,铸件断面上的温度梯度也就越小。
(3)浇注条件的影响 液态金属的浇注温度很少超过液相线以上100℃,因此,金属由
于过热所得到的热量比结晶潜热要小得多,一般不大于凝固期间放出的总热量的5%~6%。
但是,实验证明,在砂型铸造中非等到液态金属的所有过热量全部散失。
3.凝固方式对铸件质量的影响
铸件的致密性和健全性与合金的凝固
方式密切相关。由上节所述可知,在铸件断面温度场相近的情况下,无论何种合金,它们的
结晶温度范围的大小对凝固方式的影响有共同的规律性。根据结晶温度范围将合金分为窄结
晶温度范围合金、宽结晶温度范围合金和中等结晶温度范围合金三种类型。
由于纯金属、共晶成分合金和窄结晶温度范围的合金在一般的铸造条件下是以逐层方式
凝固的,其凝固前沿直接与液态金属接触。当液态金属凝固成为固体而发生体积收缩时,可
以不断地得到液体的补充,所以产生分散性缩松的倾向性小。